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ABSTRACT

Vietnam is one of the top 5 largest shrimp exporters globally, and Mekong delta of Vietnam
contributes more than 80% of total national production. Along with intensive farming and
growing shrimp farming area, diseases are a severe threat to productivity and sustainable
development. Timely response to emerging shrimp diseases is critical. Early detection and
treatment practices could help mitigate disease outbreaks, leading to on-site diagnostics,
instant services recommendation, and front-line treatments. The authors establish a con-
tribution hub for data collection in the ethnographic fieldwork of Mekong delta. Several
deep convolutional neural networks are trained by applying the transfer learning technique.
We have investigated six common reported shrimp diseases. The classification accuracy is
achieved of 90.02%, which is very useful in extremely non-standard images. Throughout the
work, we raise the attention of shrimp experts, computer scientists, treatment agencies, and
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policymakers to develop preventive strategies against shrimp diseases.

1 Introduction

The shrimp farming industry in Vietnam has been expanding con-
tinuously for decades, especially in the Mekong Delta. Regarding
the shrimp industry alone, the region contributes more than 80%
of total production, mainly from Bac Lieu (BL), Ca Mau (CM),
Ben Tre (BT), and Soc Trang (ST) [[1], see Figure E} In 2017,
these provinces contributed more than 50% of Vietnam’s total
shrimp production. In 2018, the region’s total shrimp farming
area was about 720,000 hectares, with a total of 745,000 tons.
Leading the production is the giant tiger shrimp (Penaeus mon-
odon), whose output is around 300 ktons per year. In the first
seven months of 2019, Vietnam’s shrimp exports reached US$ 1.8
billion (https://tongcucthuysan.gov.vn/en-us/Fisheries-Trading/doc-
tin/013419/2019-08-27/vietnam-shrimp-exports-started-to-

reverse). The leading shrimp importers of Vietnam include the
EU, the USA, Japan, China, Korea, Canada, Australia, ASEAN
countries, and Switzerland, accounting for 96% total export value
(http://seafood.vasep.com.vn/702/onecontent/certifications.html).
On January 18, 2018, Decision 79/QD-TTg of the Vietnamese
Prime Minister issued a national plan for shrimp industry devel-
opment to 2025. The goal is to export shrimp worth 10 billion
USD from 2020 to 2025 (https://customsnews.vn/small-production-

hindered-vietnamese-shrimp-industry-10734.html) (i.e., an average
growth of 12.7% per year) of which the value of brackish water
shrimp exports will be USD 8.4 billion; the total area of brack-
ish shrimp farming will reach 750,000 hectares; the centralized
area for rearing giant freshwater prawn will be 50,000 hectares;
lobster farming will reach 1,300,000m* cages; total shrimp pro-
duction will reach 1,153,000 tons (average growth of 6.73% per
year); brackish shrimp will be archived by 1,100,000 tons; giant
freshwater shrimp reaches 50,000 tons, and lobster reaches 3,000
tons (http://agro.gov.vn/vn/tID25840_Nam-2020-xuat-khau-tom-
dat-55-ty-USD.html). Although they occupy less than 10% of the
land devoted to shrimp farming, they contribute about 80% of total
production [?]. The growth of the shrimp industry is necessary to
provide shrimp-based products for increasing global population
demands. The need for such manageable growth is intensively
recognized as an essential goal. However, strengthening the inten-
sification of production can also make shrimp more susceptible
to diseases. For example, in 2012, one-sixth of the total area was
severely damaged by infectious diseases, acute hepatopancreatic
necrosis disease (AHPND), or early mortality syndrome (EMS)
[2]. Warnings on potentially sustainable intensification indicate the
increasing understanding of the government and shrimp farmers
of the environmental, economic, and social impacts of increasing
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aquaculture production and its trade-off. The Vietnamese govern-
ment has cooperated with international partners to find solutions
to improve the sustainable and effective shrimp farming practices
of the country and the Mekong Delta, focusing on small-scale
shrimp farming (https://psmag.com/environment/the-environmental-
impacts-of-shrimp-farming-in-vietnam), see Figure[2] Along with
intensive farming and growing shrimp farming area, diseases are a
severe threat to productivity and sustainable development of shrimp

S
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Figure 1: Mekong Delta of Vietnam and its provinces.

Although there are many policies and plans from the govern-
ment and localities for the development of the shrimp industry
in the Mekong Delta, shrimp production in many provinces con-
tinues to suffer significant economic losses due to the impact of
shrimp diseases. Besides, the intensive farming of many shrimp
crops per year is also affected because shrimp farmers have to
spend time preparing new shrimp ponds after the shrimp dis-
eases. According to an FAO survey conducted from 2013 to
2016, all respondents said shrimp diseases affected their farms
(http://www.fao.org/3/ca6702en/ca6702en.pdf). Commonly re-
ported diseases are AHPND, EMS, white spot syndrome virus
(WSSV), white feces syndrome (WFS), and yellow-headed virus
(YHV). Regarding WSSV, shrimp farmers are aware of an infection
occurrence over an extended period, e.g., from 25 to 60 days after
stocking. The delay in disease detection and treatment interven-
tion can lead to the severe loss of the entire shrimp crop. Shrimp
farmers reported that EMS, WSSV, and YHV diseases could not be
controlled while WFS is manageable. The most regular exercise
shrimp farmers apply to reduce disease risks is to buy quality food
from reputable hatcheries and prepare and disinfect ponds. How-
ever, these reactions depend significantly on their own experiences
without much scientific knowledge and standardization of treatment.
These exercises make the shrimp industry in Mekong Delta vul-
nerable to the rapid and un-manageable propagation of emerging
diseases. According to statistics on Asian Fisheries Science, 8.72%
of Penaeus monodon ponds and 32.48% of Penaeus vannamei ponds
in 2014 were reported to have been affected by shrimp disease [3]].
In 2015, the monodon-affected ponds of AHPND were reported to
be 5,875 hectares, while more than 5,509 hectares used for Penaeus
vannamei culture were infected. WSSV remains the most important
viral pathogen of farmed shrimp, with the ability to infect quickly
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and often results in from 80% to 100% crop failure. Infections of Pe-
naeus monodon and Penaeus vannamei ponds in the Mekong Delta
in 2015 were estimated US$ 11.02 million loss. When preparing to
submit this article, the authors read the information in Quang Ngai
province (Vietnam) and knew that the People’s Committee of Binh
Son district had just decided to handle the compulsory destruction
of 21 diseased shrimp ponds (http://vietlinh.vn/tin-tuc/2020/nuoi-
trong-thuy-san-2020-s.asp?ID=470). Accordingly, local authorities
were forced to destroy all white leg shrimp in 21 shrimp ponds
with an area of 49700m> of 11 shrimp farmers. Dead shrimps
were diagnosed with WSSV and AHPND. Shrimp farmers did not
know the identity of shrimp diseases and asked for information on
shrimp forums. It causes devastating delays in detection and timely
intervention.

Consequently, timely response to emerging shrimp diseases is
critical. Early detection and treatment practices could help mitigate
disease devastation, leading to on-site diagnostics, instant services
recommendation, and front-line treatments.

In contrast with the abundance of research on shrimp diseases
[4]- [7], computer science applications for them are uncommonly
explored, especially identification and classification. Thanks to
the ubiquity of mobile devices and social media networks, shrimp
farmers have many online channels and forums to post images of
shrimp diseases and ask for any detection, help on knowledge and
treatments, see two examples in Figure 3] The volume of infor-
mation related to shrimp diseases has been accumulated overtimes,
and those being generated by shrimp farmers should be notified to
experts, treatment agencies, and policymakers. There is a need to
have a place to collect images for integrating legacy information
with contemporary knowledge related to shrimp diseases. Accurate
and early detection is preliminary to any intervention and recom-
mendation of treatments. It is obvious to say that early detection
and intervention are better than treatment when diseases get worse.
Hence, leveraging technology in the easily automatic identification
of these diseases has become essential.

Figure 2: An example of small-scale shrimp farming in Mekong Delta. Shrimp
farmers dig a pond and establish several holding pens next to their house. Image
courtesy to Roberto Schmidt/AFP/Getty Images.

To the best of our knowledge, the authors have made several
contributions as follows.
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e First, we establish a contribution hub where farmers can send
images of emerging shrimp diseases. This kind of contribu-
tion hub or center has not existed before. Several images have
been sent to shrimp experts at local universities for labeling.

e Then, a machine learning system is deployed to identifica-
tion diseases. Although the number of images is small, the
detection accuracy should not be sacrificed and less demand
for computing power. More specifically, the authors apply
convolutional neural networks applying the transfer learning
technique. Addressing those requirements lead to our second
contribution.

e Third, we have investigated six common reported shrimp dis-
eases, which make the experiments the most intensive in the
literature.

Tém nay bi bénh giz,cdch khic phuc

Total doc 42 ,but not feeding last 5days
what is the reason?

& 1 5 Comments

(I comment £ Share

oY Like

Figure 3: Shrimp farmers took pictures of infected samples, posted them to a Face-
book forum and asked for help on the emerging diseases. The text above the pictures
on the left means "What is the disease of this shrimp? How to cure?”

2 Related Work

The purpose of this work is neither to discuss existing research
on shrimp diseases in aquaculture through the lens of biologists
[8, O] nor the effects of diseases over shrimp industry from an
ecological perspective [10].By the time we wrote a literature re-
view, there is very little research on the classification or detection
of shrimp diseases based on images. YHV recognition applica-
tion was designed in [I1]]. They proposed an image processing
algorithm based on the Niblack algorithm to detect and eliminate
shrimp with only YHV from the gather lines. Another work de-
voted to WSSV detection in shrimp images using the K-means
clustering technique (https://www.semanticscholar.org/paper/White-
Spot-Syndrome- Virus-Detection-in-Shrimp-using-Nagalakshmi-

Jyothi/5d77b95d947adf375139a01662b6b308e2024811).  They
equipped special spectrographic cameras, which are either not
affordable to shrimp farmers or applicable in real scenarios. An-
other exciting research on the identification of softshell and sound
shrimps, e.g., caused by physical illness or pathological disease,
has been done in [12]. Several exciting shrimp image analysis

lhttps ://sites.google.com/view/shrimp-image-collection/home
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applications but not disease detection can be referred to as shrimp
freshness evaluation and marine organism classification [14].

Many previous researchers have focused their attention on de-
ploying a more accurate deep convolutional neural network regard-
ing shrimp images. Zihao et al. developed ShrimpNet-3 [15]], for
recognizing shrimp, which is an architecture modification from
LeNet-5 [16]. Similarly, the idea of modifying the architecture of
a deep neural network like AlexNet, in this case, is investigated
in [I7]. That paper addressed the task of classification between
a softshell and sound shrimp from an imaging perspective. The
mentioned works examined several architectures, but the main point
is that the networks need to be trained from scratch. These papers
have not investigated the transfer learning approach which our work
intends to.

3 System Components

In this Section, the authors briefly describe the proposed architec-
ture to satisfy the paper’s contributions. We illustrate our system
components in Figure E We launch a data collection hubEl where
shrimp farmers across Mekong Delta region and other countries can
send their images. It happens is step 1 in the system components.
In step 2, shrimp images are sent to experts in local universities
for ground-truth labeling. We can see in Figure[3] shrimp farmers
send pictures with a diverse background, including fingers, catching
equipment, soil, and floor. In step 3, we replace the background by
white color. Steps 4, 5, and 6 are the necessary machine learning
process. However, we do not train the models from scratch. Instead,
we apply the transfer learning technique, which is further described
in Section {@). At step 7, we contact the farmers who had sent
shrimp images to ask for further details of the emerging diseases.

4 Technical Background

4.1 Transfer Learning

The traditional machine learning process emphasizes the entire pro-
cess of independent learning from data collection, model selection
and training, performance evaluation, and metadata tuning. Modern
object identification and classification models with millions of pa-
rameters can take weeks to complete training. Therefore, the first
need is that the database used for model training must be enormous.
The second requirement is computer infrastructure and financial
support, especially in high power-consumption algorithms such as
neural networks.

Definition 1 Given a training data set X,,4;; € R™™ and equivalent
label Y4y € R" where n, and m are the number of samples and
the number of attributes, respectively. Traditional machine learning
methods seek to build a f prediction model by training on pairs
Xirains Yirain) = {(xi, yi)’ oy (X, yn)}

A principal assumption in applying machine learning algorithms
is that the training and test data must share a similar feature space,
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more specifically Xj,,;» and X, are described using the same at-
tributes. However, this assumption can be difficult to satisfy in many
real-world applications. It reduces the generalization possibilities of
machine learning models. The difference between transfer learning
traditional machine learning is shown in Figure[3]

Raw images from shrimp Raw images from shrimp
farmers @ farmers @
v
Image labelling by
shrimp experts @

Y v
Background elimination Background elimination
v h 4
Machine le.'?n?jng modelél) Trained models

training
h 4
Classification
A4

Contact shrimp farmers, treatment @
agencies, and experts for recommendation

Figure 4: Our proposed system components.

Different tasks Source tasks Target tasks
./’" h\\
255’ /
Model Model Model model

a) traditional machine learning b) transfer learmning

Figure 5: Difference between traditional machine learning and transfer learning.

The idea of transferring knowledge is a new approach to ma-
chine learning practices. It develops a mechanism of knowledge
transferability in one or more source tasks and uses it to improve the
prediction capacity in a new task [18])- [21]]. It is like the propagation
of knowledge from a well-developed domain with a lot of learning
data to a less-developed domain that is limited due to insufficient
data [22] [23]. The method allows machine learning models to be ap-
plied to new data drawn from distributions that are entirely different
from the original data sources. Machine learning algorithms avoid
suffering from the cold start problems by leveraging fully trained
models on predefined large datasets [24} 25], Transfer learning aims
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to improve generalization ability in the target task by leveraging
knowledge from the source task(s). We can define transfer learning
as follows.

Definition 2 Given a source domain D" where we define a
learning task 7°"“*. We denote D¢ and 7'¥8¢" are a target
domain and a target learning task, respectively. Transfer learning
technique aims to help improve the learning of the f prediction
model for 798¢ utilizing knowledge in D" and T *°*"**, where
z)source ¢ Z)larget or TSOI,N'CE # r]'turget'

By re-weighting the observations in D***, the effects of the
various samples are reduced. Conversely, similar instances will con-
tribute more to 7'“"$¢ and may lead to a more accurate prediction.

4.2 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs), initially attending several
large-scale image classification challenges [24]-[26]], is a class of
deep, feed-forward artificial neural networks that are applied to the
vast majority of machine learning problems due to the outstanding
performance. The architecture of CNNs is usually a composition
of layers that can be grouped by their functionalities. The high per-
formance of CNNss is achieved by (i) their ability to learn rich level
image representations and (ii) leveraging a tremendous amount of
data. It can take millions of estimated parameters to characterize the
network. However, in the situation of limited data sources, training
CNNs from scratch is not very useful. There is a phenomenon in the
learning of level image that each layer represents from color blobs,
lines, and basic shapes to a high-level mixture of them. Several
first-layer patterns appear to be generic to any dataset, Hense, its
knowledge can be transferred and re-used. CNNs can be trained
on large-scale datasets, and then re-weighted on a particular target
dataset. The idea of training deep neural networks applying transfer
learning has been explored by previous research [27]-[30].

4.2.1 Inception-based models

The Inception deep convolutional architecture was introduced as
GoogLeNet or Inception-v1 in [31]. Later architecture improvement
was the introduction of batch normalization or Inception-v2 [32]
and additional factorization or Inception-v3 [33].

Filter Concat

5x5 in
GoogleNet
(Inception-v1) | 33 | | x4 |

i 1
|1x1| |1x1| |Poo|||1x1|
|Base|

Figure 6: Inception module A.

In image representation, the prominent patterns can exist in
different size variations. Therefore, the problem is to choose the
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appropriate filter size that slides through the image. The idea of in-
ception effectively addresses the mentioned problem by introducing
several Inception modules where multiple-size filters operate on the
same level. See Figures[6] [7] and[§]or Inception Module A, B, and
C respectively. Consequently, the computational expense is signifi-
cantly reduced because of the reduction of connections/parameters.
The outline of our adapted implementation architecture is described

in Table

J

nx1

1x

!

Two 1x7 and 7x1

replacing two 7x7

1x7 and 7x1
replacing 7x7

Figure 9: A depthwise and a pointwise convolutions.

Table 1: The MobileNets architecture [34]]. At the softmax layer, c is the number of
labels. dw means depthwise.

Layer (Stride)

| Filter size

Input size

n=7in
imelementation | | 1 ([ v ] [ vt | conv2d (s2) 3x3x3%32 204 x 224 X 3
Ihdl I”“I |P°°'I lhdl conv2d dw (s1) 3x3x32dw 112 x 112 x 32
T — = conv2d (sl) 1x1x32x64 112x112x32
|E, conv2d dw (s2) 3x3x64dw 112 x 112 x 64
conv2d (sl) 1x1x64x128 56 X 56 x 64
Figure 7: Inception module B. conv2d dw (s1) 3x3x128 dw 56 X 56 x 128
conv2d (sl) 1x1x128 x 128 56 X 56 x 128
For promoting conv2d dw (s2) 3x3x128 dw 56 X 56 x 128
"r'eg:r:'s'::t':‘t';::' conv2d (s1) Ix1x128x256 | 28x28x 128
' conv2d dw (sl) 3 x 3 %256 dw 28 x 28 X 256
conv2d (sl) 1 X1 x256 %256 28 X 28 X 256
conv2d dw (s2) 3 x 3 %256 dw 28 x 28 X 256
conv2d (s1) 1 x1x256x512 14 x 14 x 256
5x conv2d dw (s1) | 3x3x512dw 14 x 14 x 512
conv2d (sl) 1 x1x512x%x512 14 x 14 x 512
conv2d dw (s2) 3x3x512dw 14 x 14 x 512
conv2d (sl) 1 xX1x512x1024 | 7x7x512
conv2d dw (s2) 3x3x1024 dw 7x7x1024
conv2d (sl) 1 x1x1024x1024 | 7x7x1024
Figure 8: Inception module C. avg_pool (s1) 7x7 7 X7 %1024
fully connected (s1) | 1024 x 1000 1x1x1024
softmax (s1) predictions Ix1xc

4.2.2  Depthwise separable convolution-based model

MobileNets is a family of mobile-first computer vision models
designed by Google [34]. Its primary design is to help develop
robust applications on mobile devices where restricted resources
exist. Similar to how other popular CNNs models, it can be de-
veloped for addressing classification, detection, and segmentation
tasks. The main point in Mobilenets is that two separated depthwise
and pointwise convolutions perform the filtering and combination
processes. More precisely, the model splits the convolution into
a3 x3andalx 1 depthwise and pointwise, respectively. The
depth-wise convolution applies a single filter to each input channel,
the pointwise convolution combines the outputs of the depth-wise
ones. These two different convolutions are illustrated in Figure
O] The depthwise separable convolution architecture is described
in Table[I] The comparison between the inception-v3 model and
mobilenets is presented in Table 2]

2https ://www . facebook.com/ShrimpCul ture/
3https ://www . facebook . com/shrimp.nursery.tech/
4https ://www.facebook.com/ShrimpDisease/
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Table 2: The comparison between the inception-based and MobileNets models.

Experimented models [ # Mult-Adds (Million) [ # Parameters (Million)
5000 23.6
569 4.24

Inception
MobileNets 1.0-244

S Experiments

5.1 Datasets

In this work, the authors have evaluated the machine learning mod-
els on different data sources. We collected images from a wide
range of shrimp forum{”ﬂﬂ where farmers posted the shrimp im-
ages and asked for help. We also launch a data collection hub as
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Grid Size Reduction
(with some modifications)

Input: $99x299x3, Output:8x8x2048
I

5x Inception Module A

4x Inception Module B

Grid Size Reduction

2x Inception Module C

B

Qutput;

Input:
8xB8x2048

299x299x3

Convolution
AvgPool
MaxPool

Final part:8x8x2048 -> 1001

Concat
Dropout
Fully connected

Auxiliary Classifier

Softmax

Figure 10: The outline of inception-based architecture. At the softmax layer, 1001 is replaced by the number of predicted labels in our dataset.

discussed in Section[3] The hub has been advertised to provinces
administrations and shrimp farmers in Mekong Delta. The images
were collected under various conditions, such as lighting, angle,
distance, and background. Then, they were fed into learning models
without manually resizing.

We sent raw images to experts at the College of Aquaculture &
Fisherieﬂ and experts in our project for labeling. The image back-
ground was manually removed using Adobe Photoshop by several
technical assistants. Then the images were rechecked by the experts
to be accepted as training images. Since the number of images
we have collected weekly is not that much, the proposed manual
pre-processing works acceptably.

Table 3: Shrimp diseases dataset used in the experiments.

# | Label # Observations
1 | Black gill 37
2 | Black spot 52
3 | WSSV 88
4 | IMNV 45
5 | NHB 47
6 | YHV 35
7 | Healthy shrimp 44
Total images 348

At the time of conducting this paper, the authors receive images
of 6 most asked shrimp diseases such as YHV [33], black gill [36],
black spot [37], WSSV [38]], infectious myonecrosis virus (IMNV)
[39], and necrotizing hepatopancreatitis bacterium (NHB) [40]. We
also add healthy shrimps as the seventh class. Example of pho-
tos collected by the authors presented in Figure [[T] We show the
distribution of samples into classes in Table [3]

5https ://caf.ctu.edu.vn/en/
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5.2 Experimental Results

The implementation process is executed using Anaconda Python
Distribution for Python 3.6 installed in Windows 10, TensorFlow
version 1.7, and NVIDIA GPU Computing Toolkit 10.2. Our exper-
iments were conducted on a regular machine equipped with a Core
7 with 2.5GHz clock speed, GPU NVIDIA GeForce 940MX, and
16GB of RAM.

In our experiments, we grid-search several hyperparameters as
follows. The learning rate (Ir) is {0.1,0.01}. The number of epoch
(ep) is {1000, 2000, 3000}. We randomly shuffle the dataset into an
80% training set, a 10% validation set, and a 10% test set, which
is a regular choice in machine learning practices. We refer to it as
the 80/10/10 splitting schema. The models are tuned by the best
score on the validation set. The tuning process is to find the best
combination of hyperparameters of the learning rate and the number
of epoch. After that, we run the train models on the test set for final
classification accuracy. We run the experiments five times and take
the average scores.

The input size of the MobileNets model is 224 x 224 x 3 for
height, width, and channel, respectively. Regarding the Inception
model, the input size is 299 x 299 x 3. The performance of models
is reported in Table [ and the identification accuracy is highlighted
in Figure[T2] The reported running time includes (i) shuffling im-
ages into 80/10/10 schema, (ii) training the model on the train-
ing/validation sets, and (iii) performing prediction capacity on the
test set. Note that the best hyperparameters combination is 0.01 and
2000 for the learning rate and the number of epoch, respectively.

6 Remarks
The experimentation has been conducted on shrimp images of 7

categories with a total of 348 samples. Removing the image’s back-
ground is the only step for the pre-processing procedure on collected
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Figure 11: Shrimp diseases images. From left to right and the first row to bottom row, the labels are black gill, black spot, WSSV, IMNV, NHB, YHV. The last image
illustrates the result of background elimination. The red circles indicate the disease expression.

images. The authors also tried the experiments without the step
of background elimination, but the results were quite low. It is
clearly stated in Table [ that the combination of transfer learning
and several convolutional neural networks works well in the shrimp
images classification task. The inception-v3 model achieves the best
classification accuracy score at 90.02%.

Ir=0.01, ep = 3000
Ir=0.01, ep = 2000
Ir=0.01, ep= 1000
Ir=0.1, ep=3000
Ir=0.1, ep=2000
Ir=0.1, ep=1000
78 80 32 84 86 a8 a0 92

B MobileNets 1.0-244 M Inception-V3

Figure 12: Accuracy comparison between two models.

One thing to note is that the shrimp’ images themselves have not
appeared in the ImageNet dataset, on which the models have been
pre-trained. The experiment results have proved the remarkable
ability of knowledge transferability even if the dataset distribution
is different. The best score of each version of the models is reached
when the learning rate is 0.01, and the number of epoch is 2000.

By the time of conducting this paper, there are newer ver-
sions of inception and mobilenets. However, the authors choose

wWwWw.astesj.com

inception-v3 and mobilenets-vl because they are the standard
transfer learning models, successfully integrated into many ma-
chine learning libraries, and can be adequately trained on a wide
range of machines such as regular laptops, Google cloud TPU
(https://cloud.google.com/tpu/docs/inception-v3-advanced), smart-
phones, and small IoT devices (https://software.intel.com/en-
us/articles/inception-v3-deep-convolutional-architecture-for-
classifying-acute-myeloidlymphoblastic). Newer versions need
to be configured in different working environments.

7 Conclusion and Outlook

The growth of the shrimp industry is essential to provide shrimp-
based products for global population demands, and the need for such
manageable growth is intensively recognized as a principal goal. In
the shrimp industry of Mekong delta of Vietnam, the farming sector
is highly fragmented over regions. Shrimp farmers are vulnerable
to epidemic diseases once they occur. Although various sources and
agencies exist which aim to support services and treatments, there
is not a single place where shrimp experts, farmers, computer scien-
tists, treatment agencies, and policymakers can effectively connect.
Shrimp farmers have to rely on neighbors and social networks for
help on emerging diseases. By looking at the problems’ insight, the
authors, throughout this work, pave several first stones of a complete
solution. We have launched a data collection center that shrimp
farmers assure to send images and questions. We apply the trans-
fer learning technique to leverage the effectiveness of trained deep
convolutional neural networks on different non-standard datasets. A
good accuracy score is archived, confirming this research direction
is worth investigating. We have investigated six common reported
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Table 4: The performance of two models regarding hyperparameters combination. The best scores are in bold.

Hyperparameters - Models :
combination . . Inception-V3 - . . MobileNets 1.0-244 -
Classification accuracy (%) | Running time (s) | Classification accuracy (%) | Running time (s)

Ir=0.1, ep = 1000 82.22 +1.47 97.75 £ 0.43 83.88 +2.30 25.24 +2.26
Ir = 0.1, ep = 2000 88.34 + 1.25 150.61 = 5.29 88.34 +£2.34 53.51 £6.95
Ir = 0.1, ep = 3000 87.22 +1.53 146.99 + 2.86 87.78 + 1.53 75.09 £ 2.79
Ir =0.01, ep = 1000 87.78 £ 2.50 104.21 + 3.08 86.68 + 5.34 41.12 £ 0.57
Ir = 0.01, ep = 2000 90.02 + 1.53 128.97 + 9.41 89.46 + 2.34 5847 + 1.41
Ir = 0.01, ep = 3000 88.90 + 2.80 157.96 = 14.17 88.90 + 1.97 75.67 £ 1.07

shrimp diseases and one class of healthy shrimp.
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